
66 www.mca-marines.org/gazette Marine Corps Gazette • August 2023

Ideas & Issues (InnovatIon)

In Force Design 2030, Comman-
dant Berger identifies an impera-
tive requirement to modernize
the force,1 “[F]uture Marines will

possess ... the intellectual and technical
skills required to innovate, adapt, and
succeed in the rapidly changing 21st
century operating environment.”2 In
a technology-dominated operating
environment, automation is essential
to mission success.3 The Russian war
with Ukraine produced software appli-
cations enabling decentralized targeting
and automated alerting.4 Innovation
through automation provides a leaner,
increasingly efficient, and effective
fighting force. The requisite technical
infrastructure and software lifecycle
process do not currently exist to enable
Marines across the force to effectively
automate solutions to current and fu-
ture problems. What infrastructure and
processes should be developed to enable
the development of automation within
the Marine Corps?

Successful Application Development
Example
 While writing a deployment’s worth
of fitness reports over a satellite connec-
tion from a tent in Jordan, I was frus-
trated that the connection periodically
failed. The first couple of times I was
informed that the weather at the dis-
tant end was bad so there was not any
point in troubleshooting. Marines are
accustomed to adapting to marginal
conditions. After a while, I started won-
dering why the weather in Lago, Italy,
was so bad. Is this weather problem real
a convenient answer for the satellite con-
trollers to avoid messing with power

or troubleshooting the connection? It
was perpetually dry and sunny in Jor-
dan, so at least half of the satellite shot
seemed to be without weather impacts.
I checked the weather after the connec-
tion was restored and quickly found
that the weather issues the controllers
reported did not in any way match the
weather reporting. This problem be-
came so frequent that I kept browser
tabs dedicated to the weather at different
locations. Eventually, I was tired of ask-
ing my Marines to get past the weather
story. I wrote a short Python application
to concurrently display the weather at
two locations using data from a free
weather Application Programming
Interface (API). I turned this applica-
tion into a Windows executable, and
one of my Marines wrote a PowerShell
script to sign the application with the
domain certificates for use on our lap-
tops.5 Shared network storage enabled
distribution of the application to any
user who desired to run the executable.
This application development, testing,
and delivery lifecycle worked because
the infrastructure (domain, servers, and
workstations) was entirely maintained
and administered by my unit. We pos-
sessed both the requisite infrastructure
and the capability to develop a software

lifecycle process. While five detachment
rotations later this application may no
longer be used, this experience dem-
onstrates that small problems can be
solved or reduced through automation.

External Federal Application Devel-
opment Example
 Looking outside the Marine Corps,
here is an example of an existing soft-
ware development lifecycle in a different
federal agency. Developers who work
on an application test and change their
code locally and then commit their
changes into a GitLab repository. As
code is added/changed and committed
to the code repository, the repository’s
continuous integration pipeline uses
runners to build the code into a Red
Hat Package Manager package and
run applicable functional tests to en-
sure that the changes do not negatively
affect the application’s performance.
The pipeline continues to execute other
jobs, such as checking for dependency
vulnerabilities and security concerns
with Static Application Security Test-
ing tools and potentially with dynamic
testing tools. Assuming that problems
are not detected, the continuous deliv-
ery portion of the pipeline then signs
the Red Hat Package Manager and

Automation
for Future Conflicts

The requirement for infrastructure and processes
 to enable the software development lifecycle

by Maj David “Skip” McGee

>Maj McGee, is a Communications Officer currently assigned to the Marine Coders
section, Innovation Laboratory Branch in the Marine Innovation Unit. Maj McGee
previously deployed as the Officer in Charge of the Deployable Joint Command
and Control Detachment 20.2. He has served with MARFORPAC as a C4 Operations
Officer, as the Operations Officer for Marine Wing Communications Squadron-48
Det A Fwd, as the S-6 Director for Marine Corps Air Station Yuma, and held Platoon
and Company Command at 8th Communication Battalion.

 www.mca-marines.org/gazette 67Marine Corps Gazette • August 2023

deploys the package to a development
environment yum server repository.
When the hosts in that environment
run a periodic update, they update
to the latest application version. This
process occurs seamlessly, without
manual intervention, unless there is a
need for developer attention to resolve
a functional issue or security problem.
Additional functional and dynamic
tools are run against the new version
of the application in the development
environment up to and potentially even
including user testing. At some point in
this review process, another pipeline is
triggered to push the application from
the development environment to the
production environment repository
where the production hosts update to
the new version. Is there a reason that
we could not create a similar infrastruc-
ture and software development process
within the Marine Corps Enterprise
Network (MCEN)?

Failed Application Development Ex-
ample
 The MARFORPAC G-6 watch de-
scribed their process for obtaining intel-
ligence and awareness of cyber threats
and threat actors in the INDOPACOM
Area Of Responsibility. Commercially
procured and tailored threat intel data
was too expensive, so they maintained

a list of over thirty uniform resource
indicators or websites that they read
daily in order to identify changes and
relevant events in the area of respon-
sibility. This task was time intensive,
depended entirely on the analyst for its
thoroughness, and did not scale well as
websites or uniform resource indicators
were added. I saw an opportunity for
automation and wrote a Python web
scraper to identify occurrences of the
keywords that they were looking for
within the website list and return the
corresponding paragraphs, so the ana-

lysts only needed to review a relevant
subset of websites instead of iterating
over the whole list. This solution could
enable the watch to increase its list of
uniform resource indicators and im-
prove its area of responsibility aware-
ness while both reducing the time spent
browsing the list and standardizing the
review across watch officers. Yet, I could
not find a path to integrate this script
into the MCEN for the watch officers
to use. Lack of hosting resources, proxy
problems, and lack of shared authentica-
tion were the challenges. Since I could
not identify the approval process or au-
tomate the distribution of a software
product into the MCEN, the initial
code was migrated from DevForce to
GitHub.6 However, this meant that all
work had to be conducted outside of the
MCEN due to the inability to access
GitHub to make code changes and work
on the app from inside the MCEN.
Once the first conceptual version of
the application was ready for testing,
I could not find an effective solution
for hosting it or identify the process
for hosting such an application in the
MCEN. I considered using a raspberry
pi to host a web user interface based
on the script on my home network but
decided that the lifecycle maintenance
of the application and user accounts
would be too much to support on my

own for free. This project failed due to
the lack of hosting infrastructure and
process for development, testing, ap-
proval, and delivery.

Sharing Solutions
 Building infrastructure to enable
automation is a shared joint problem.
The other Services understand the 21st-
century operating environment and the
value of automation. The MCEN now
makes VSCode, Anaconda, and RGui
available to end workstation users in the
software center—so the suite of user

development tools is growing. The De-
fense Information Systems Agency’s
GitLab instance is a significant step to-
ward a SecDevOps infrastructure that
enables joint application development.
This resource is accessible from inside
the DOD Information Networks, freely
available to users who desire to host a
project or repository, and uses com-
mon access card authentication as well
as personal access tokens for pushing/
pulling code changes. GitLab runners
(if unfamiliar, think computation and
processing for continuous integration
jobs) can be registered to this instance
to enable building software from the
code repositories using continuous inte-
gration/continuous delivery pipelines,
enabling a developer or developer team
to build an application entirely inside
the DOD Information Networks.
 From a knowledge and capability
perspective, integration with the Re-
serve Component can provide exper-
tise using the existing initiatives of the
Marine Corps Software Factory and
the Marine Coders.7 The 06XX com-
munity possesses the 0673 MOS, which
is developing the pipeline to train Ma-
rines.8 Simultaneously, the coding and
automation skills of the average Marine
are advancing as programming courses
increase in popularity in high schools
and colleges.9 Project this trend into the
next ten to fifteen years and the ability
of a Marine to automate a problem will
be correspondingly higher. We must de-
velop the infrastructure and processes
to weaponize that ability.

Analyzing the Problem
 While a case could be made for Ser-
vice-specific GitLab/GitHub instance,
we will assume here that the DISA in-
frastructure remains freely available
to any service member. The remain-
ing challenge, therefore, is integrating
the continuous delivery portion of a
pipeline into the MCEN. This process
begins by registering runners inside the
MCEN. Then we need to answer some
organizational questions to determine
the way forward, such as how do we
authorize and deploy applications?
What are the resource requirements
and what is the secure delivery process?
Web applications, applications signed

Is there a reason that we could not create a similar in-
frastructure and software development process with-
in the Marine Corps Enterprise Network (MCEN)?

68 www.mca-marines.org/gazette Marine Corps Gazette • August 2023

Ideas & Issues (InnovatIon)

with DOD Certification Authority cer-
tificates, and corresponding web access
firewall implementations could add a
requirement for closer coordination and
support from system administrators
and potentially manual intervention
into the deployment cycle. How does
that application development cycle oc-
cur quickly and securely?
 There are essentially two potential
destinations for these applications, a
test/development environment and a
production environment. The infra-
structure for these two potential des-
tinations does not exist (to my knowl-
edge) but would be relatively easy to
create, potentially via defined network
rules with access to create FedRAMP-
approved Red Hat Enterprise Linux
virtual machines in Azure or Amazon
Web Services to use as runners and ap-
plication hosts (with some additional
security controls around the production
environment).
 There are three different distribution
methods that should be considered, bro-
ken down by operating system package
manager: a yum/dnf repository for Red
Hat Enterprise Linux hosts (assuming
an Aptitude repository is unneces-
sary), integration into System Center
Configuration Manager for Windows,
and container repository integration.
For the moment, we can ignore the
container distribution method.The
knowledge base or infrastructure of
containers, container runtimes, and
container registries is currently not
resident within the MCEN and FMF,
and creating both that knowledge base
and infrastructure is a much heavier lift
than the solutions I propose.
 There are two different application
use cases that need to be considered,
distinguishing whether that application
is deployed to a server or a workstation.
Server applications could be hosted in
an environment with authentication,
defined/limited network access rules,
and Domain Name System integra-
tion, whereas workstation applications
would need to be installed and tested
on workstations, presumably requir-
ing local administrative access to the
workstation.
 While each of these components of
the application development cycle pos-

sesses unique characteristics and tech-
nical problem subsets, the overarching
problems that the Marine Corps must
solve are infrastructure ownership, de-
fining the application lifecycle process,
and funding the supporting infrastruc-
ture. The overall resources required to
maintain the infrastructure described
here are very minimal, not more than
one full-time equivalent employee or
military member, and some associated

costs for virtual machine licensing in
Amazon Web Services or Azure. The
most critical problems are determining
the ownership and application lifecycle
process.

Conclusion
 Consider a logistician who develops
an application or script to help auto-
mate a transportation problem and sev-
eral users in combat operation centers
worldwide want to install and use it.
How would that Marine accomplish
that task right now? Would they con-
tact people at Information, Command,
Control, Communications and Com-
puters and Marine Corps Cyberspace
Operations Group and try to work
their way uphill to develop a devel-
opment process and infrastructure?
Quite possibly they would give up in
frustration once someone mentions the
most dreaded three letters in military
information technology: the ATO (au-
thority to operate). How should they
tackle that problem? We need a defined
process and infrastructure for complet-
ing that software development lifecycle
at the pace and timeline of the war-
fighter. Commandant Berger ordered
us to innovate, adapt, and succeed. The
Marine Corps could lead the Services
in developing secure coding practices
and secure application delivery prac-
tices and processes because we have the

capability to do better. We are growing
the requisite knowledge base across the
force. We do not currently possess the
Service-level infrastructure to enable
secure automation and application de-
velopment. The Marine Corps must de-
velop a resourced testing/development
environment and define the approval
process to enable software development,
testing, integration, and delivery.

Notes
1. David H Berger, Force Design 2030 (Wash-
ington, DC: May 2020).

2. Ibid.

3. Charlie S. Bahk, “Announcement of the Ma-
rine Corps Software Factory Pilot,” Marines.
mil, March 30, 2023, https://www.marines.
mil/News/Messages/Messages-Display/Ar-
ticle/3325426/announcement-of-the-marine-
corps-software-factory-pilot.

4. Drew Harwell, “Instead of Consumer Soft-
ware, Ukraine’s Tech Workers Build Apps
of War,” Washington Post, March 24, 2022,
https://www.washingtonpost.com/technol-
ogy/2022/03/24/ukraine-war-apps-russian-
invasion.

5. David McGee, “WeatherScraper,” GitHub,
November 29, 2020, https://github.com/skipm-
cgee/weatherscraper.

6. This resource https://gitlab.devforce.disa.mil
was last accessed in July of 2022 and appears
to no longer be accessible, perhaps replaced by
https://web.git.mil.

7. “Announcement of the Marine Corps Soft-
ware Factory Pilot.”

8. Ibid.

9. Additional information is available at https://
advocacy.code.org/2022_state_of_cs.pdf.

The Marine Corps must
... enable software de-
velopment, testing, in-
tegration, and delivery.

